Apache Airflow is an open-source workflow orchestration platform originally developed by Airbnb. It enables users to author, schedule, and monitor complex data engineering pipelines through a user-friendly interface. With a "configuration as code" approach using Python scripts, Airflow allows developers to easily create workflows by importing libraries and classes. It utilizes directed acyclic graphs (DAGs) to handle task dependencies and scheduling, offering a streamlined alternative to legacy schedulers that relied on disjointed configurations.
Apache Airflow is designed for Data Engineers, Data Scientists, and organizations seeking a robust workflow orchestration and scheduling platform. It is suitable for those working on data pipelines, ETL (Extract, Transform, Load) processes, and complex data workflows. With its focus on programmable task dependencies, flexible scheduling, and extensive plugin ecosystem, Apache Airflow enables users to create, monitor, and manage complex workflows with ease. Whether you are working with big data, machine learning, or analytics pipelines, Apache Airflow provides the tools to efficiently orchestrate and automate your data workflows.